Soil fertility in organic systems: lessons from long-term studies

William R. Horwath Department Land, Air and Water Resources

University of California Davis

UC Organic Soil Fertility Management Symposium Thursday, January 15, 2009 Activities & Recreation Center, UC Davis

Talking points

- Organic agriculture: quality over production
- Managing soil fertility in organic systems

 Soil organic matter
- Organic and crop rotation effects on soil
- Manipulating nutrient availability
- Nutrient issues in organic systems

Agricultural drivers

	Last Century	<u>Today</u>	
Economics	 -Increasing yield → -Solving resource issues → -Land expansion 	-Genetic manipulation -Biological property issues -Food processing	
Social	-Increasing population \rightarrow -Food supply \rightarrow	 -Human health -Poverty -Animal rights -Food safety Organic production 	
Environment	-Water quality → -Pesticides	-Water quality -Air quality -Greenhouse gas emissions -pesticides	

Converting to organic systems

- Challenge is to use fertilizers with variable nutrient contents
- Nutrient availability is also inconsistent
- Key to organic fertilizer management is to realize that nutrient demand is likely not met on an annual basis.

Managing long-term nutrient availability

• Key is to manage not only the amount of soil organic matter but also the rate and timing of nutrient release

Soil Organic Matter

- Cation Ion Exchange capacity
 - 300 to 700 cmol(+)/kg
- Capacity to chelate metals
- Enhance soil physical properties
 - Water Holding capacity
- Source of nutrients
 C/N/S/P = 100/10/1/1
- Positive influence on soil properties

Soil Organic Matter

Labile SOM Active fraction ~2 year old

Resistant SOM ~5 to 100 years old

Stable SOM >1000 years old Light fraction/ Microbial biomass

Resistant Organic Matter

> Very Stable Organic Matter

Contribution of Soil Organic Matter Fractions To available soil nitrogen

Available nutrients

Organic and crop rotation effects on soil

CONVENTIONAL FOUR-YEAR ROTATION

ORGANIC & LOW INPUT ROTATIONS

	Fall	Winter	Spring	Summer	
Year 1	co	ver crop		tomatoes	
Year 2	co	ver crop		safflower	
Year 3	co	ver crop		corn	
Year 4	08	nts/vetch		beans	

K. Klonsky, DARE, UC Davis, 5-99

SUSTAINABLE FARMING SYSTEMS A UC DAVIS PROJECT COMPARING CONVENTIONAL AND LOW-INPUT SYSTEMS INITIATED IN 1989

Soil C and N in Sustainable Agriculture Farming System project under different management.

	Soil %C		C	Soil %N		
System	Fall	Fall	Fall	Fall	Fall	
	1988	1996	2000	<u>1996</u>	2000	
Organic	0.83	1.08	1.13	0.117	0.116	
Low-input	0.83	1.03	1.04	0.111	0.107	
Conv-4	0.83	0.90	0.92	0.094	0.095	
Conv-2	0.83	0.84	0.88	0.092	0.094	

Carbon		Nitrogen		
Organic	5.3 t C ha ⁻¹	Organic	462 kg N ha ⁻¹	K
Cover crop	3.4 t C ha ⁻¹	Cover crop	273 kg N ha ⁻¹	

Microbial Biomass after 10 years of management at SAFS

Nutrient availability

Soil Carbon Change over 10 years

Time (Y)

1.5

1.0

0.5

% Soil Carbon

80 to 90% of 10 year accumulation

Organic Low-input

Conventional

10

Fertilizer & Soil N availability and synchrony

Cover crop/organic amendment

Nitrogen mineralization potential in different Farming Systems

N requirement varies depending on cropping system SAFS

Mineralizable N over growing season

Systems recovery of N using stable N isotope methods SAFS

N allocation differs by system

Fertilizer use highest in conventional management

System

Manipulating nutrient availability

Fertilizer and Soil N Availability

SAFS

Organic Rotation Uptake of Vetch N

Treatment

Fertilizer and Soil N Availability

How does cropping system management change pathways and allocation?

Uptake of vetch N compared to fertilizer N

Nutrient issues in organic systems

Average yield (ton hā¹) of tomato among different cropping systems.

Cropping System	Marketable Yield	Unmarketable Yield	Total Yield
Conventional	72.2	19.7	91.9
Low-input	72.6	25.4	98.0
Organic	69.0	26.9	95.9

Point N₂O Emissions from SDI and FI (µg m⁻² h⁻¹) Compared by Cover Crop Treatment

Runoff Water Quality Seasonal Volume-Weighted Average Concentration

• TSS CT > ST

All Other Constituents of Concern (COC)

- No substantial difference between treatments
- Orthophosphate, NH4-N, NO3-N all below 2mg/L

Summary

- With appropriate combination of amendments sufficient amount and synchrony of nutrient delivery can be achieved
 - Limiting factor is the soil can only store finite N
 - Key is to manipulate the size of mineralizable N pool
- Interactions of amendments with other amendments and soil nutrient pools needs further research to fine tune nutrient delivery
- Organic management can impact the environment

