Controls and Driving Factors of Nitrous Oxide Flux from Agricultural Soil

Martin Burger University of California Davis

Soil Factors affecting N₂O production and emission The "Leaky Pipe Theory"

Controls on N₂O Emissions

Soil water content (water-filled pore space)

- Regulates diffusion of gases into and out of soil
- Microbial activity

Carbon availability

Residue or manure incorporation

Temperature

Nitrogen availability

- N-fertilizer, organic matter mineralization
- Residual nitrate
- Reactive N is main driver of N₂O increase in the atmosphere

Source: IPCC, 2001

N₂O in the Atmosphere

Observed and projected N₂O concentrations

Greenhouse Gas Emissions (GGE)

_		
	Tg CO ₂ equivalents	%
Net GGE in U.S.	6432	100
 N₂O all sources 	469	7
 N₂O Agricultural soil 	365	6
• N ₂ O emissions in Californi	a ?	

Source: EPA 2005

Chambers used for static N₂O flux measurements in the field

N₂O emissions tend to be event based

Irrigation and Cover Crop Effects on N₂O Emissions

Interaction of Fertilizer Type & Tillage on N₂O Emissions

Corn crop (May - Nov 2004)

N₂O emissions, Yield and Fertilizer N

N Fertilizer Rate vs. N₂O Emission

Hypothetical Model Applied Fertilizer N vs. N₂O Emission Factors

Hypothetical Model Applied Fertilizer N vs. N₂O Emission Factors

Hypothetical Model Applied Fertilizer N vs. N₂O Emission Factors

Hypothetical Model Applied Fertilizer N vs. N₂O Emission Factors

Conclusions

- Controls and drivers of N₂O emissions are well known, but the magnitude of the emissions is difficult to predict
- Optimizing N fertilizer use efficiency is probably also the best strategy to minimize N₂O emissions
- Actual N₂O flux measurements in California cropping systems will provide improved emission estimates and information on mitigation potential